

Environmental Product Declaration

FALK, Insulated Metal Panels

Declaration Owner

FALK Panel LLC 1782 Northridge Dr. NW, Walker, MI 49544 info@falkpanel.com +1.616.541.4500 | falk.com

Product

Insulated Metal Panels

- HFW-40 (3")
- CSW-44 (4")
- SSR-42 (3")
- RRP-40 (2.5")
- RDEK-40 (3")
- MRP-44 (4")

Declared Unit

The declared unit is 100m² of panel

EPD Number and Period of Validity

SCS-EPD-10288 EPD Valid November 8, 2024 through November 7, 2029

Product Category Rule

PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements. Version 4.0. UL 10010. March 2022.

PCR Guidance for Building-Related Products and Services Part B: Insulated Metal Panels, Metal Composite Panels, and Metal Cladding: Roof and Wall Panels, UL 10010–5. October 23, 2018. Expiration date Dec 31, 2024.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration owner:	FALK Panel LLC	
Address:	1782 Northridge Dr. NW, Walker, MI 49544	
Declaration Number:	SCS-EPD-10288	
Date of Issue:	November 8, 2024	
Declaration Validity Period:	EPD Valid November 8, 2024 through November	7, 2029
Program Operator:	SCS Global Services, 2000 Powell Street, Ste. 600,	, Emeryville, CA 94608 USA
Declaration URL Link:	https://www.scsglobalservices.com/certified-gree	n-products-guide
General Program Instructions:	SCS Type III Environmental Declaration Program:	Program Operator Manual. V12.0
Product(s):	Insulated Metal Panels: HFW-40, CSW-44, SSR-42,	, RRP-40, RDEK-40, MRP-44
Declared Unit:	100m ² of panel	
Markets of Applicability:	North America	
EPD Type:	Product specific	
EPD Scope:	Cradle-to-gate	
Year(s) of Reported Manufacturer	July 1, 2022 to June 20, 2024	
Primary Data:	July 1, 2023 to Julie 30, 2024	
LCA Software & Version Number:	OpenLCA v 2.1.0	
LCI Database(s) & Version Number:	Ecoinvent v3.10	
LCIA Methodology & Version Number:	TRACI 2.1, CML-IA, IPCC AR5	
Part A	PCR Guidance for Building-Related Products and	Services Part A: Life Cycle Assessment
Product Category Rule:	Calculation Rules and Report Requirements. UL 1	0010, UL v4.0, March 2022.
Part A PCR Review conducted by:	Lindita Bushi, PhD (Chair); Hugues Imbeault-Tétre	eault, ing., M.Sc.A.; Jack Geibig
Part B	PCR Guidance for Building-Related Products and	Services Part B: Insulated Metal Panels,
Product Category Rule:	Metal Composite Panels, and Metal Cladding: Roo	of and Wall Panels, UL 10010–5. October 23,
	2018. Expiration date Dec 31, 2024	
Part B PCR Review conducted by:	Thomas Gloria (Chair), Industrial Ecology Consulta	ants; Lindita Bushi, PhD; Bob Zebcik, PE
LCA Practitioner:	Lucas Wathen	
Independent critical review of the		
and the PCR:		
	Lindita F	susly
LCA Reviewer:	Lindita Bushi, Ph.D., Athena Sus	stainable Materials Institute
		~
Independent verification of the		
declaration and data, according to	🗆 internal	🖾 external
ISO 14025 and the PCR:		
EPD Verifier:	Lindita Bu	Aut
	Lindita Busni, Ph.D., Athena Sus 1 EALK Papel LLC	anable Materials Institute
	2 PRODUCT	2
Declaration Contents:	3. Methodological Framework	
Declaration contents.	4. LCA: Results	
	5. LCA: Interpretation	
	6. References	
Disclaimers: This EPD conforms to ISO 14	025, 14040, 14044, and ISO 21930.	
Scope of Results Reported: The PCR requ	irements limit the scope of the LCA metrics such that th	he results exclude environmental and social
performance benchmarks and thresholds,	and exclude impacts from the depletion of natural res	ources, land use ecological impacts, ocean
impacts related to greenhouse gas emissio	ns, risks from hazardous wastes and impacts linked to	hazardous chemical emissions.
Accuracy of Results: Due to PCR constrain	nts, this EPD provides estimations of potential impacts	that are inherently limited in terms of

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

In accordance with ISO 21930:2017, EPDs are comparable only if they comply with the core PCR, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

The owner of the declaration shall be liable for the underlying information and evidence; SCS shall not be liable with respect to manufacturer information, life cycle assessment data, and evidence supplied or made available to SCS.

1. FALK Panel LLC

FALK specializes in manufacturing premium insulated metal roof and wall panels, while operating from a state-of-theart production facility located in Walker, MI. The organization is committed to delivering innovative, high-quality, sustainable construction solutions, with a strong focus on versatility. Our panels are designed to streamline construction processes, reduce labor expenses, and offer a variety of aesthetic options to meet diverse architectural needs. Our skilled team is committed to their pursuit of excellence within the insulated metal panel market, delivering outstanding value, craftsmanship, and adaptability.

2. PRODUCT

2.1 PRODUCT DESCRIPTION

Insulated metal panels, or IMPs, are frequently referred to as sandwich panels due to their structure: a layer of foam insulation nestled between two metal sheets. These panels provide insulative properties while serving as the outer wall, interior wall, ceiling and roof assemblies for various buildings. FALK's offerings are well suited for agricultural, commercial, industrial, cold storage applications and have recently been used within the automotive and pharmaceutical sectors because of the superior thermal resistance they provide. Wall Product categories include HFW40, CSW44. Roofing categories for sloped applications are SSR42, RRP40 and when low slope commercial roof is needed MRP44 and RDEK40 meet the needs with commercially available waterproofing membranes.

2.2 TECHNICAL SPECIFICATION

FALK insulated metal panels belong to the CSI code 074213.19 for Insulated Metal Walls. Additional technical specifications and applicable codes for each FALK panel are provided in the tables below.

Table 1. specification of FALK insulated metal panel properties

Technical Specification	Unit	HFW-40 RDEK-40	CSW-44 MRP-44	SSR-42	RRP-40
Intended Application	n/a	Wall; Roof	Wall; Roof	Roof	Roof
Length	m	2.44 - 25.0	2.44 - 25.0	2.44 - 25.0	2.44 - 25.0
Width	m	1.02	1.12	1.07	1.02
Thickness	mm	76.2	102	76.2	63.5
Density	kg/m ³	37.1	37.1	37.1	37.1
Tensile Strength (Adhesion)	MPa	0.124 – 0.179	0.124 - 0.179	0.124 - 0.179	0.124 - 0.179
Modulus of Elasticity (Steel)	MPa	210,000	210,000	210,000	210,000
U-value of assembly including interruptions	W/(m2/K)	0.043	0.03	0.043	0.053
R value of typical materials where continuous	m2K/W	22.8	30.4	22.8	19.0
Water vapor permeance	Metric Perms	N/A	N/A	N/A	N/A
Airborne sound reduction	dB	N/A	N/A	N/A	N/A
Sound absorption coefficient	%	N/A	N/A	N/A	N/A

 Table 2. List of testing and classification standards applicable to FALK insulated metal panels

Standard Code	Standard Name
ASTM C518	Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
ASTM D1929	Standard Test Method for Determining Ignition Temperature of Plastics
ASTM E72	Standard Test Methods of Conducting Strength Tests of Panels for Building Construction
ASTM E84	Standard Test Method for Surface Burning Characteristics of Building Materials
ASTM E1592	Standard Test Method for Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference
ASTM E1646	Standard Test Method for Water Penetration of Exterior Metal Roof Panel Systems by Uniform Static Air Pressure Difference
ASTM E1680	Standard Test Method for Rate of Air Leakage through Exterior Metal Roof Panel Systems
ASTM E283	Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen
ASTM 331	Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference
CAN/ULC S138	Standard method of test for fire growth of insulated building panels in a full-scale room configuration
NFPA 286	Standard Methods of Fire Test for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth
UL 1256	Standard for Test for Surface Burning Characteristics of Building Materials

Figure 2. Flow diagram illustrating the life cycle of FALK insulated metal panels.

2.4 APPLICATION

Insulated metal panels are roofing and wall products designed to serve as structural elements and/or a barrier between buildings and their environments.

2.5 DECLARATION OF METHODOLOGICAL FRAMEWORK

The scope of the EPD is cradle-to-gate, including raw material extraction and processing; raw material transportation; and product manufacture including packaging.

Manufacturing resource use was allocated to the products based on mass. Impacts from transportation were allocated based on the mass of material and distance transported.

Processes contributing greater than 1% of the total environmental impact indicator for each impact are included in the inventory. No known flows were deliberately excluded from this EPD.

2.6 MATERIAL COMPOSITION

Table 3. Material component summary for 100m² of 76.2mm (3") thick FALK **HFW-40 & RDEK-40** and 102mm (4") thick FALK **CSW-44 & MRP-44** insulated metal panels.

	HFW-40 & R	RDEK-40 (3")	CSW-44 & MRP-44 (4")			
Material	Mass Final Product	Recycled Content	Mass Final Product	Recycled Content		
	(%)	(%)	(%)	(%)		
Product						
Steel - Interior	31%	71%	30%	71%		
Steel - Exterior	45%	65%	39%	77%		
lsocyanate	15%	0.00	19%	0.00		
Polyol	7%	0.00	10%	0.00		
Other	2%	0.00	2%	0.00		
Total:	100%	52%	100%	52%		
Packaging						
Fiberboard	79%	90%	79%	90%		
LDPE	18%	7%	18%	7%		
Other Packaging	3%	0%	3%	0%		
Total:	100%	73%	100%	72%		

*Columns may not sum due to rounding

Table 4. Material component summary for 100m² of 76.2mm (3") thick FALK **SSR-42** and 63.5mm (2.5") thick FALK **RRP-40** insulated metal panels.

	SSR-4	2 (3")	RRP-40 (2.5")			
Material	Mass Final Product	Recycled Content	Mass Final Product	Recycled Content		
	(%)	(%)	(%)	(%)		
Product						
Steel - Interior	32%	71%	32%	71%		
Steel - Exterior	44%	77%	46%	65%		
lsocyanate	15%	0.00	13%	0.00		
Polyol	7%	0.00	7%	0.00		
Other	2%	0.00	2%	0.00		
Total:	100%	57%	100%	53%		
Packaging						
Fiberboard	78%	90%	78%	90%		
LDPE	19%	7%	19%	7%		
Other Packaging	3%	0%	3%	0%		
Total:	100%	72%	100%	72%		

*Columns may not sum due to rounding

2.7 TRANSPORTATION

The majority of raw materials (~85%) are sourced from within North America, and require only truck and/or rail transportation for delivery to FALK's facility in Walker, MI. The remaining raw materials (~15%) are sourced internationally and require a combination of ocean freight, truck, and/or rail for delivery. All packaging materials are sourced within the U.S. and delivered via truck.

2.8 MANUFACTURE

Manufacturing of FALK insulated metal panels takes place at their facility in Walker, MI. IMP production takes place in four stages: (1) entry, (2) foaming, (3) cutting, and (4) packaging. During the entry stage, upper and lower steel coils are formed, brought together, and a protection film is applied to the lower coil. Next, foam is mixed, poured into a heated/formed steel frame, and allowed to expand to fill the desired space between coils. Once cooled, panels are cut to the desired size and inspected for quality. Finally, during the packaging stage, IMPs are stacked, bundled, and packaged prior to distribution.

No "green power", or CO₂ certificates is/are included in this EPD project.

2.9 PACKAGING

All FALK IMPs are packaged for distribution primarily using hardboard, LDPE stretch wrap, and LDPE protection film. Recycled content values of packaging materials can be found in Table 2 Table 5.

3. Methodological Framework

3.1 DECLARED UNIT

Based on the Part B PCR, the declared unit is defined as coverage of 100m² (1076.4 f²) with metal product. This declared unit does not capture any losses on installation.

Table F	Declarged			a a la carata la	faiatar	forthe		a co di cot a cota a	
Table 5.	Declarea unit,	, mass, and	mass	conversion	jactor	jor trie	FALK IIVIP	product system	1.

Name	Unit	HFW-40 RDEK-40	CWS-44 MRP-44	SSR-42	RRP-40
Declared Unit	m ²		100m ² (of panel	
Mass	kg/100m ²	1370	1420	1340	1330
Conversion factor to 1kg	m²/kg	7.29x10 ⁻²	7.02x10 ⁻²	7.47x10 ⁻²	7.51x10 ⁻²

3.2 SYSTEM BOUNDARY

 Table 6. FALK insulated metal panel system boundary.

I	Produc	t	Const	ruction				Use					End-o	of-life		Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B1	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recovery and/or recycling potential
Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

X = Module Included | MND = Module Not Declared

3.3 ALLOCATION

This LCA follows an attributional approach as outlined in ISO 21930 Section 7.1.1. Manufacturing resource use was allocated to the products based on mass. Impacts from transportation were allocated based on the mass of material and distance transported. With respect to secondary materials, the 100-0 recycled content approach is used in which the recycled material bears only the burden of any processing from waste material and transportation to the facility. No allocation to secondary material, secondary fuels or recovered energy is permitted.

3.4 CUT-OFF RULES

According to the PCR, processes contributing greater than 1% of the total environmental impact indicator for each impact are included in the inventory. No data gaps were allowed which were expected to significantly affect the outcome of the indicator results.

3.5 DATA SOURCES

Primary data were provided by FALK for their manufacturing facility in Walker, MI. The principal source of secondary LCI data is the Ecoinvent 3.10 database, with additional secondary electricity generation data from the US EPA's eGRID database. LCI data for hot dip galvanization are taken from the AISI report, "Life Cycle Inventories of North American Steel Products," which details inputs and outputs required for the hot dip galvanization process.

			Data	Publication
Component	Dataset	Geography	Source	Date
Raw Materials				
	steel production, converter, low-alloyed steel, low-alloyed Cutoff, U	RER*	EI v3.10	2023
	steel production electric low alloyed Listeel low alloyed LiGutoff LL	EU w/o CH	ELV2 10	2022
Stool	steer production, electric, low-anoyed steer, low-anoyed Cuton, o	and AU*	LI V3.10	2025
Sleer	Steel Dynamics, Prepainted, metallic-coated, cold-rolled steel sheet	Butler, IN	EPD	2024
	market for hot rolling, steel hot rolling, steel Cutoff, U	GLO	El v3.10	2023
	market for sheet rolling, steel sheet rolling, steel Cutoff, U	GLO	El v3.10	2023
	market group for electricity, medium voltage electricity, medium	CL 0	AISI	2020
	voltage Cutoff, U	GLU	El v3.10	2023
	market group for natural gas, high pressure natural gas, high pressure	CL 0	AISI	2020
	Cutoff, U	GLU	EI v3.10	2023
Hot Dip	market for nitrogon, liquid Linitrogon, liquid LiQutoff LL	PoW/	AISI	2020
Galvanization	market for filtrogen, liquid filtrogen, liquid Cuton, o	RUW	El v3.10	2023
	market for steam, in chemical industry steam, in chemical industry	DoW/	AISI	2020
	Cutoff, U	RUW	El v3.10	2023
	market for zing Lizing LiCutoff LL	CL 0	AISI	2020
	market for zinc zinc cuton, o	GLU	EI v3.10	2023
	market for polyester resin, unsaturated polyester resin, unsaturated	DoW/	ELV2 10	2022
	Cutoff, U	ROW	EI V3.10	2023
Steel Coating	market for polyvinylchloride, emulsion polymerised polyvinylchloride,	CL 0	ELV2 10	2022
	emulsion polymerised Cutoff, U	GLU	EI V5.10	2025
	market for polyvinylfluoride polyvinylfluoride Cutoff, U	GLO	El v3.10	2023
	market for chemical, inorganic chemical, inorganic Cutoff, U	GLO	EI v3.10	2023
	market for pentane pentane Cutoff, U	GLO	El v3.10	2023
_	market for methylene diphenyl diisocyanate methylene diphenyl	5 W	51 0 40	2022
Foam	diisocyanate Cutoff, U - RoW	Row	EI V3.10	2023
Insulation	market for polyether polyols, short chain polyether polyols, short chain	D 11/	51 240	2022
	Cutoff, U	ROW	EI V3.10	2023
	market for polyurethane adhesive polyurethane adhesive Cutoff, U	GLO	El v3.10	2023
Packaging				
	market for polyethylene, low density, granulate polyethylene, low	(10)	ELV2 10	2022
Protection Film	density, granulate Cutoff, U	GLU	EI V3.10	2023
	market for extrusion, plastic film extrusion, plastic film Cutoff, U	GLO	El v3.10	2023
	market for polyethylene, linear low density, granulate polyethylene,	CL 0		2022
Stretch Wrap	linear low density, granulate Cutoff, U	GLU	EI V3.10**	2023
	GLO market for extrusion, plastic film extrusion, plastic film Cutoff, U	GLO	El v3.10**	2023
Hardboard	market for fibreboard, hard fibreboard, hard Cutoff, U	RoW	EI v3.10**	2023
Transport				
Truck	market for transport, freight, lorry 16-32 metric ton, EURO4 transport,	DeW	ELV2 10	2022
Truck	freight, lorry 16-32 metric ton, EURO4 Cutoff, U	ROW	EI V3.10	2023
Chin	market for transport, freight, sea, container ship transport, freight, sea,	CL 0	EL. 2.10	2022
Ship	container ship Cutoff, U	GLO	EI V3.10	2023
Rail	market for transport, freight train transport, freight train Cutoff, U	US	El v3.10	2023
Manufacture In	puts			
Ele staisite :	market for electricity, medium voltage electricity, medium voltage	DECM		2022
Electricity	Cutoff, U	RECIVI	egrid	2022
Natural Co-	market for heat, district or industrial, natural gas heat, district or	Dall	EL. 2.40	2022
Natural Gas	industrial, natural gas Cutoff, U	ROW	EI V3.10	2023
Propane	market for propane propane Cutoff, U	GLO	EI v3.10	2023
Water	market for tap water tap water Cutoff, U	RoW	EI v3.10	2023
Waste Outputs				
Manufacture	market for inert waste, for final disposal Linert waste, for final disposal L			
Waste	Cutoff, U	RoW	EI v3.10	2023
Wastewater	market for wastewater, average wastewater, average Cutoff, U	RoW	EI v3.10	2023

Table 7. LCI datasets and associated databases	used to model the FALK insulated metal p	oanels.
--	--	---------

*Ecoinvent datasets modified to reflect regional electricity grid and technology make-up from steel suppliers in the following countries: US, MX, KR, IN, UK

**Ecoinvent datasets modified to reflect recycled content values provided by FALK

3.6. DATA QUALITY

The data quality assessment addressed the following parameters: time-related coverage, geographical coverage, technological coverage, precision, completeness, representativeness, consistency, reproducibility, sources of data, and uncertainty.

 Table 8. Data quality assessment.

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The manufacturer provided primary data on product manufacturing for the Walker, Mi facility for a year beginning July 1, 2023 and ending June 30, 2024. Representative datasets (secondary data) for upstream and background processes are generally less than 5 years old.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Electricity use for product manufacture is modeled using representative data modelled for the specific electricity grids represented in this study. Surrogate data used in the assessment are representative of global or European operations and are considered sufficiently similar to actual processes.
Technology Coverage: Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative component datasets, specific to the type of material, are used to represent the actual processes, as appropriate.
Precision: Measure of the variability of the data values for each data expressed	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one more years and over multiple operations, which is expected to reduce the variability of results.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the products. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represents typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent v3.10 data where available. Different portions of the product life cycle are equally considered.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of the data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data: Description of all primary and secondary data sources	Energy use data at the Walker, MI facility represents a 12-month average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. For secondary LCI data, Ecoinvent v3.10 data are used.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the products and packaging is low. Actual supplier data for upstream operations was not available for all suppliers and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years) but lacked geographical representativeness. Uncertainty related to the impact assessment methods used in the study are high. The impact assessment methodology includes impact potentials, which lack characterization of providing and receiving environments or tipping points.

3.7 PERIOD UNDER REVIEW

The period of review is based on a 12-month period from July 1, 2023 through June 30, 2024.

3.8 COMPARABILITY AND BENCHMARKING

The PCR this EPD was based on dictates that comparison of the environmental performance of insulated metal panels shall be based on the IMP's use and impacts at the building level. As the scope of this EPD is cradle-to-gate (A1-A3) and does not include the use phase of the panels, it may not be used for comparison.

Furthermore, this cradle-to-gate EPD is intended for business-to-business (B2B) communication.

3.9 ESTIMATES AND ASSUMPTIONS

The assessment relied on a number of assumptions related to material composition, processing, and transportation. The major assumptions used in the assessment are described below.

- Specific data were not available on the production of cyclopentane and isocyanate in the insulation recipe. Secondary datasets for pentane, and methylene diphenyl diioscyanate were used from the Ecoinvent database to represent these insulation ingredients in the LCA model.
- Steel used in the production of FALK IMPs is sourced from around the globe. When a specific steel plant of
 origin could not be identified, national averages from worldsteel were used to model the relevant steel-making
 technologies; electric arc furnace (EAF) vs basic oxygen furnace (BOF).
- PVC pipe is consumed as an ancillary material during panel production. Based on input from product experts at FALK, this material was deemed to fall below the 1% cut-off.
- Water is only used during the production of the SSR-42 and RRP-40 IMPs. Without the ability to submeter water use, an assumption that 5% of total building water use is attributable to the IMP product system was made based on estimates of water use during manufacturing from experts at FALK.
- Transportation distance of the manufacturing waste to the appropriate waste treatment facility is assumed to be 32 km by truck based on the US EPA WARM model.

4. LCA: Results

Results of the Life Cycle Assessment are presented below. It is noted that LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

The following environmental impact category indicators are reported using characterization factors specified by the PCR, using the TRACI 2.1, CML-IA, and IPCC AR5 impact assessment methods. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Table 9. Mandatory environmental impact assessment categories.

Impact Category	LCIA Method	Unit
GWP: Global Warming Potential	IPCC AR5, 2013	kg CO ₂ eq
ODP: Depletion potential of the stratospheric ozone layer	TRACI 2.1	kg CFC 11 eq
AP: Acidification Potential of soil and water	TRACI 2.1	kg SO ₂ eq
EP: Eutrophication Potential	TRACI 2.1	kg N eq
SFP: Smog Formation Potential	TRACI 2.1	kg O₃ eq
ADP _F : Abiotic Depletion Potential, fossil fuels	CML-IA Baseline	MJ, LHV

These impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes. The following inventory parameters, specified by the PCR, are also reported.

Table 10. Additional transparency categories.

Resource Use Indicators	Unit	Waste and Output Indicators	Unit
RPR _E : Renewable primary resources used as energy carrier (fuel)	MJ, LHV	HWD: Hazardous waste disposed	kg
RPR_M: Renewable primary resources with energy content used as material	MJ, LHV	NHWD: Non-hazardous waste disposed	kg
NRPR_E: Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	RWD: Radioactive waste, conditioned, to final repository	kg
NRPR_M: Non-renewable primary resources with energy content used as material	MJ, LHV	CRU: Components for re-use	kg
SM: Secondary materials	kg	MR: Materials for recycling	kg
RSF: Renewable secondary fuels	MJ, LHV	MER: Materials for energy recovery	kg
NRSF: Non-renewable secondary fuels	MJ, LHV	EE: Recovered energy exported from the product system	kg
RE: Recovered energy	MJ, LHV	EE: Recovered energy exported from the product system	MJ, LHV
FW: Use of new freshwater resources	m ³		

All LCA results are stated to three significant figures in agreement with the PCR for this product and therefore the sum of the total values may not exactly equal 100%.

lmpact Category	Unit	A1	A2	A3	A1-A3 Total
HFW-40/RDEK-4	10				
GWP	kg CO2 eq	4,790	514	226	5,530
ODP	kg CFC-11 eq	1.05x10 ⁻⁴	8.24x10 ⁻⁶	3.76x10 ⁻⁶	1.17x10 ⁻⁴
AP	kg SO ₂ eq	19.1	2.67	0.827	22.6
EP	kg N eq	29.0	0.570	0.988	30.6
SFP	kg O₃ eq	242	62.4	10.4	315
ADPF	MJ	61,200	7,030	2,930	71,100

Table 11. LCIA Environmental Impact Results for 100m² of 76.2mm (3") thick FALK HFW-40 and RDEK-40 IMP.

 Table 12. LCIA Environmental Impact Results for 100m² of 102mm (4") thick FALK CSW-44 and MRP-44 IMP.

Impact Category	Unit	A1	A2	A3	A1-A3 Total			
CSW-44/MRP-44	CSW-44/MRP-44							
GWP	kg CO2 eq	5,470	552	233	6,250			
ODP	kg CFC-11 eq	1.36x10 ⁻⁴	8.85x10 ⁻⁶	3.89x10 ⁻⁶	1.48x10 ⁻⁴			
AP	kg SO2 eq	22.4	2.66	0.847	25.9			
EP	kg N eq	35.3	0.612	1.01	37.0			
SFP	kg O₃ eq	275	63.5	10.7	349			
ADPF	MJ	73,200	7,570	3,020	83,800			

Table 13. LCIA Environmental Impact Results for 100m² of 76.2mm (3in) thick FALK SSR-42 IMP.

lmpact Category	Unit	A1	A2	A3	A1-A3 Total
SSR-42					
GWP	kg CO2 eq	4,670	519	236	5,430
ODP	kg CFC-11 eq	1.06x10 ⁻⁴	8.32x10 ⁻⁶	3.95x10⁻ ⁶	1.19x10 ⁻⁴
AP	kg SO2 eq	18.8	2.54	0.862	22.2
EP	kg N eq	28.7	0.575	1.04	30.3
SFP	kg O₃ eq	236	60.3	11.0	307
ADPF	MJ	60,500	7,100	3,150	70,700

Fable 14. LCIA Environmental Impact Results	for 100m ² of 63.5mm	(2.5") thick FALK RRP-40 IMP
---	---------------------------------	------------------------------

Impact Category	Unit	A1	A2	A3	A1-A3 Total
RRP-40					
GWP	kg CO ₂ eq	5,080	560	226	5,870
ODP	kg CFC-11 eq	1.08x10 ⁻⁴	8.96x10 ⁻⁶	3.79x10⁻ ⁶	1.21x10 ⁻⁴
AP	kg SO ₂ eq	20.2	2.92	0.829	23.9
EP	kg N eq	30.3	0.622	1.03	32.0
SFP	kg O₃ eq	257	68.3	10.5	336
ADPF	MI	64.300	7.650	2,960	74.900

		5			
lmpact Category	Unit	A1	A2	A3	A1-A3 Total
HFW-40/RDEK-4	40				
RPRE	MJ, LHV	4,970	92.7	1,020	6,080
RPRM	MJ, LHV	0.00	0.00	0.00	0.00
NRPRE	MJ, LHV	65,100	7,120	3,250	75,500
NRPRM	MJ, LHV	0.00	0.00	0.00	0.00
SM	kg	779	0.00	37.4	817
RSF	MJ, LHV	0.00	0.00	0.00	0.00
NRSF	MJ, LHV	0.00	0.00	0.00	0.00
RE	MJ, LHV	0.00	0.00	0.00	0.00
FW/	m ³	53.9	0.954	1 17	56.0

Table 15. Resource use indicators Results for 100m² of 76.2mm (3") thick FALK HFW-40 and RDEK-40 IMP.

 Table 16. Resource use indicators Results for 100m² of 102mm (4") thick FALK CSW-44 and MRP-44 IMP.

Impact Category	Unit	A1	A2	A3	A1-A3 Total
CSW-44/MRP-4	4				
RPRE	MJ, LHV	5,820	101	1,030	6,950
RPRM	MJ, LHV	0.00	0.00	0.00	0.00
NRPRE	MJ, LHV	77,800	7,670	3,350	88,800
NRPRM	MJ, LHV	0.00	0.00	0.00	0.00
SM	kg	834	0.00	37.4	872
RSF	MJ, LHV	0.00	0.00	0.00	0.00
NRSF	MJ, LHV	0.00	0.00	0.00	0.00
RE	MJ, LHV	0.00	0.00	0.00	0.00
FW	m ³	61.4	1.03	1.21	63.7

Table 17. Resource use indicators Results for 100m² of 76.2mm (3") thick FALK SSR-42 IMP.

Impact Category	Unit	A1	A2	A3	A1-A3 Total
SSR-42					
RPRE	MJ, LHV	4,870	94.3	1,030	6,000
RPRM	MJ, LHV	0.00	0.00	0.00	0.00
NRPRE	MJ, LHV	64,400	7,200	3,480	75,100
NRPRM	MJ, LHV	0.00	0.00	0.00	0.00
SM	kg	855	0.00	37.4	893
RSF	MJ, LHV	0.00	0.00	0.00	0.00
NRSF	MJ, LHV	0.00	0.00	0.00	0.00
RE	MJ, LHV	0.00	0.00	0.00	0.00
FW	m ³	53.8	0.970	0.859	55.6

 Table 18. Resource use indicators Results for 100m² of 63.5mm (2.5") thick FALK RRP-40 IMP.

lmpact Category	Unit	A1	A2	A3	A1-A3 Total
RRP-40					
RPRE	MJ, LHV	5,230	101	1,020	6,360
RPRM	MJ, LHV	0.00	0.00	0.00	0.00
NRPRE	MJ, LHV	68,500	7,750	3,280	79,500
NRPRM	MJ, LHV	0.00	0.00	0.00	0.00
SM	kg	865	0.00	37.4	902
RSF	MJ, LHV	0.00	0.00	0.00	0.00
NRSF	MJ, LHV	0.00	0.00	0.00	0.00
RE	MJ, LHV	0.00	0.00	0.00	0.00
FW	m ³	57.5	1.04	0.715	59.2

Impact Category	Unit	A1	A2	A3	A1-A3 Total
HFW-40/RDEK-	40				
HWD	kg	0.00	0.00	0.00	0.00
NHWD	kg	0.00	0.00	6.84	6.84
HLRW/ILLRW	kg	0.00	0.00	0.00	0.00
CRU	kg	0.00	0.00	0.00	0.00
MR	kg	0.00	0.00	237	237
MER	kg	0.00	0.00	0.00	0.00
EE	MI, LHV	0.00	0.00	0.00	0.00

Table 19. Waste and Output Indicator Results for 100m² of 76.2mm (3") thick FALK HFW-40 and RDEK-40 IMP.

Table 20. Waste and Output Indicator Results for 100m² of 102mm (4") thick FALK CSW-44 and MRP-44 IMP.

Impact Category	Unit	A1	A2	A3	A1-A3 Total
CSW-44/MRP-4	4				
HWD	kg	0.00	0.00	0.00	0.00
NHWD	kg	0.00	0.00	7.11	7.11
HLRW/ILLRW	kg	0.00	0.00	0.00	0.00
CRU	kg	0.00	0.00	0.00	0.00
MR	kg	0.00	0.00	246	246
MER	kg	0.00	0.00	0.00	0.00
EE	MJ, LHV	0.00	0.00	0.00	0.00

 Table 21. Waste and Output Indicator Results for 100m² of 76.2mm (3") thick FALK SSR-42 IMP.

Impact Category	Unit	A1	A2	A3	A1-A3 Total			
SSR-42								
HWD	kg	0.00	0.00	0.00	0.00			
NHWD	kg	0.00	0.00	6.68	6.68			
HLRW/ILLRW	kg	0.00	0.00	0.00	0.00			
CRU	kg	0.00	0.00	0.00	0.00			
MR	kg	0.00	0.00	231	231			
MER	kg	0.00	0.00	0.00	0.00			
EE	MJ, LHV	0.00	0.00	0.00	0.00			

Table 22. Waste and Output Indicator Results for 100m² of 63.5mm (2.5") thick FALK RRP-40 IMP.

Impact Category	Unit	A1	A2	A3	A1-A3 Total			
RRP-40								
HWD	kg	0.00	0.00	0.00	0.00			
NHWD	kg	0.00	0.00	6.65	6.65			
HLRW/ILLRW	kg	0.00	0.00	0.00	0.00			
CRU	kg	0.00	0.00	0.00	0.00			
MR	kg	0.00	0.00	230	230			
MER	kg	0.00	0.00	0.00	0.00			
EE	MJ, LHV	0.00	0.00	0.00	0.00			

5. LCA: Interpretation

Figure 3 and Figure 4 illustrate the contribution analysis for all assessed LCIA indicator results for the insulated metal panels. Results demonstrate that the raw material extraction and processing life cycle stage (A1) is the dominant contributor to all LCIA indicators assessed, making up between 77% and 96% of impact.

Figure 3. Contribution analysis for the HFW-40/RDEK-40 (3"), and CSW-44/MRP-44 (4") IMPs.

Figure 4. Contribution analysis for the SSR-42 (3") and RRP-40 (2.5") IMPs.

6. References

- Life Cycle Assessment of Insulated Metal Panels. SCS Global Services. Prepared for FALK Panel LLC. September 2024.
- ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- ISO 14040: 2006/Amd1 2020 Environmental Management Life cycle assessment Principles and Framework
- ISO 14044: 2006 Amd1 2017/Amd2 2020. Environmental Management Life cycle assessment Requirements and Guidelines.
- ISO 21930: 2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- SCS Type III Environmental Declaration Program: Program Operator Manual. V12.0 December 2023.
 SCS Global Services.
- Product Category Rules for Building-Related Products and Services. Part A: Life Cycle Assessment Calculation Rules and Report Requirements. UL 10010, UL v4.0, March 2022.
- Product Category Rules for Building-Related Products and Services. Part B: Insulated Metal Panels, Metal Composite Panels, and Metal Cladding: Roof and Wall Panels, UL 10010–5. October 23, 2018 Expiration date Dec 31, 2024.
- Ecoinvent v3.10 2022. Swiss Center for Life Cycle Inventories, 2010. http://www.ecoinvent.org
- CML-IA Characterization Factors. Leiden University, Institute of Environmental Sciences. April 2013. https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
- U.S. EPA. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI).
- U.S. EPA. Waste Reduction Model. v16. https://www.epa.gov/warm/versions-waste-reduction-model
- Life Cycle Inventories of North American Steel Products. Sphera. Prepared for the American Iron and Steel Institute (AISI). November 2020.

For more information, contact:

FALK Panel LLC 1782 Northridge Dr. NW, Walker, MI 49544 info@falkpanel.com

+1.616.541.4500 | falk.com

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001

© 2024 SCSglobalServices.com